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Abstract—Refactoring source code is a key technique for main-
taining a high-quality codebase, keeping the code clean, modular,
understandable, and adaptable to change in the long run. Modern
Integrated Development Environments (IDEs), unlike plain text
editors, provide automated support for various refactorings (e.g.,
move class, extract method). IDEs have seen major advances over
the decades, but remain constrained by conventional bento-box
interfaces and input methods (e.g., keyboard). Recent advances
in Virtual Reality (VR) and eXtended Reality (XR) technology,
have opened up the possibility of rethinking IDEs, where the I
does not stand for integrated, but for immersive.

We present a novel approach for refactoring source code
in VR, combining customizable software visualizations and the
interaction capabilities of modern VR controllers. Whereas
existing research on depicting software in VR has remained
within the realm of “read-only” comprehension, we take it a step
further, making it possible to rewrite the underlying codebase
by performing interactions in VR which encode refactorings. We
present two examples where, through ambidextrous interactions
and controller triggers, developers can gather information about
the system and modify it at different abstraction levels. We
conclude with a reflection on the integration of XR features into
modern IDEs versus the development of new standalone XR-
native IDEs.

Index Terms—Refactoring, Virtual Reality, VR Interaction,
Software Visualization
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As software systems grow in complexity over time, main-
taining a high-quality codebase becomes an ongoing chal-
lenge [1]. Changes in requirements, addition of new features,
and rapid iteration cycles often lead to degraded architec-
tures [2]–[4], bloated and tangled source code [5], making
maintenance difficult and reducing the overall adaptability
of the system [1], [5]. Refactoring is a critical activity for
addressing these issues [6], [7]. By taking the time to refactor,
developers can simplify the code, making it easier for them-
selves and others to navigate. This clarity reduces the cognitive
load on developers, allowing them to focus on problem-solving
rather than deciphering tangled code [8]. Refactoring helps
developers ensure that the system remains clean, modular, and
easier to work with [1].

Despite their importance, refactorings are often hindered
by the limitations of current Integrated Development Environ-
ments (IDEs), like difficulties in feature discoverability [9] and
lack of trust in the correctness of IDE refactorings [10]. Devel-
opers prefer manual refactorings [10], missing the point that
they are supposed to be automated code transformations [11].

Whether in the IDE or in a traditional text editor, when
it comes to refactorings, developers prefer find-and-replace
strategies, relying on two-dimensional text-based interfaces
and conventional input methods (e.g., mouse, keyboard).

This consolidated ecosystem struggles to break away from
known metaphors and technologies, leaving developers with
sub-optimal tools [12] to understand and maintain increasingly
complex and interconnected software systems.

We propose an approach to refactoring based on Virtual
Reality (VR) and leverage the (6 degrees of) freedom of
modern VR controllers to interact with source code at different
levels of abstraction (see, for example, Figure 1).

Fig. 1. Example visualization and manipulation of source code in VR.

The immersive three-dimensional environment provides an
intuitive visualization of the codebase, effectively guiding the
refactoring operations. The support of Language Servers1 pro-
vides an abstraction layer to the implementation of automatic
refactorings. We show how to map the actions available in VR
to the corresponding sequence defining a refactoring.

Our approach combines customizable visualizations with
rich interaction mechanisms, exploring VR software engineer-
ing beyond program comprehension, with practical uses for
active software maintenance and evolution. We aim to improve
how developers perceive the refactoring activity and simplify
it by making the process more organic, engaging, and less
burdened by text-related technicalities. The move class and
extract method case studies show a paradigm shift from a
2D textual workspace to a dynamic 3D environment with
abstract (yet informative) representations of code elements.
The developer becomes spatially aware of the code and its
relationships, based on the context and at multiple levels.

We conclude with a broader reflection, encompassing eX-
tended Reality (XR), on advantages and disadvantages of two
contrasting approaches: Bringing XR in current IDEs versus
developing a new concept of XR-native IDE, exploring new
metaphors and leveraging new powerful interactions.

1See https://github.com/eclipse-jdtls/eclipse.jdt.ls
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II. VISUALIZATION AND INTERACTIONS

Our approach combines customizable software visualization
with the interaction capabilities of VR to create a more
intuitive and immersive experience for developers. Traditional
code representations are replaced with VR visualizations that
enable developers to explore, manipulate, and understand their
codebase in 3D.

We represent code elements such as classes, methods,
and dependencies as 3D objects (i.e., glyphs) in a Virtual
Environment (VE). The glyphs are arranged to reflect logical
groupings and relationships, enabling developers to quickly
grasp the overall structure of the system. For example, a
codebase can be visualized through the city metaphor [13],
as shown in Figure 2. Classes are represented as buildings,
laid out by a rectangle packing algorithm, and packages as
neighborhoods. The visualization can be enriched by depicting
dependencies between entities as connecting lines.

Fig. 2. Visualizing JetUML through the city metaphor.

Two hand-held controllers allow interaction with the VE,
either with nearby objects by direct contact or with distant
ones using a ray cast from the controller. Besides grabbing
items, controller buttons enable developers to access additional
features, such as visualizing the dependencies between com-
ponents. Buttons can be used during other interactions without
disrupting the workflow. Some interactions support progressive
disclosure of information: For example, the thumb-stick can
be used to activate the inspection tool, showing additional
information on-demand and at different levels of detail.

The user can interact with a glyph by grabbing and moving
it around the VE or by casting a ray from a distance. Moving
a glyph has its own semantic. For example, positioning an
element inside a hierarchy can correspond to moving a file
to a location in a nested file system path. Similarly, moving
implies constraints, naturally guided, enforced, and augmented
by visual feedback. For example, if the glyph is released in
an invalid position, it will be colored in red and automatically
return to its place upon release. If it is released in a legal
position, a preview is shown. On release, the corresponding
domain entity is moved accordingly.

The large number of available combinations to define com-
plex interaction sequences led us to model them using Finite
State Automata (FSA), such as the one shown in Figure 3.

Hover Grab Activate Deactivate Release Leave

Inspect

Leave

Fig. 3. FSA describing a generic interaction.

Each state of the FSA represents a VR interaction that the
user can perform on any glyph:

• Hover: The ray cast from the controller is placed on the
glyph. The glyph is highlighted and an haptic feedback
is reproduced on the controller.

• Leave: The ray cast from the controller is moved away
from the glyph, which returns to its original unhighlighted
status. An haptic feedback is reproduced on the controller.

• Activate: Button-based interaction. A domain-specific
action can be triggered by this interaction.

• Deactivate: Button-based interaction. A domain-specific
action can be triggered by this interaction.

• Grab: The glyph is grabbed and moved in the VE.
• Release: The glyph is released in the current position.

The interaction can have a semantic to check if the
position is valid, otherwise the glyph is placed back
in the original position. If a glyph is active, it is also
automatically deactivated when released.

• Inspect: Button-based interaction. Can be used to present
additional information.

Using two VR controllers, developers can perform multiple
complex interactions at the same time. For instance, moving
a class from one module to another can be accomplished
by grabbing the class and placing it in the desired location.
Meanwhile, the other controller can be used to collect infor-
mation about other classes or the intended destination package.
Moreover, traveling into the VE is carried out by walking into
the physical environment, hence codebase navigation can be
performed simultaneously with controller interactions.

III. REFACTORING EXAMPLES — TWO CASE STUDIES

We illustrate our approach presenting two refactoring case
studies: move class and extract method. In the first one, a
developer needs to relocate a Java class from one package to
another. In a traditional IDE, this task would require navigating
multiple files to understand dependencies, manually identi-
fying the best target package, and executing the refactoring
through a contextual menu on the class file, followed by the
selection of the destination package. In Visual Studio Code,
a popular multi-language IDE, the destination package would
be selected by browsing through a lexicographically sorted list
of all the possible destination packages. We implemented this
refactoring in a tool which we present in section IV.



In the second case study, a developer needs to break down
a large method into smaller ones, extracting parts of the logic
in one or more separate functional units (i.e., other meth-
ods). This refactoring improves code readability by increasing
abstraction levels and helps reducing code duplication. We
present this case study to show a lower-level refactoring,
directly manipulating lines of code.

The developer begins by entering the VE, where the code-
base is visualized through the city metaphor. Classes are
depicted as buildings and packages are depicted as districts.
Following the city metaphor, the size of the building represents
metrics of the class. The number of methods and fields of the
class are mapped, respectively, on the length and width of the
building’s base, while the number of lines of code is mapped
on the height of the building.

The number of references to the class is mapped on the color
saturation of the building (see Figure 4). A low-saturation
red represents a low number of references, a high-saturation
red vice-versa. Reference destinations are represented by
lines connecting the components of the codebase. Given the
potentially high number of references, they are hidden and
visualized only on-demand, to avoid unnecessary cluttering.

Fig. 4. Example visualization.

A. Move Class Refactoring in VR

In Figure 5, we show part of the sequence depicting the
interactions to perform the move class refactoring. The class
to be moved is highlighted by its color (A), and the developer
can explore this region of the city to understand the context
of the operation to be performed. To initiate the refactoring,
the developer places the ray on the class (A) and then grabs
it using one controller, dragging it to the desired package (B).
The backend performs the refactoring and dynamically updates
the visualization to reflect the change, allowing the developer
to assess the impact of the refactoring in real-time.

While moving the class, the developer can use the other
controller to perform additional interactions, like collecting
information about other entities (C), to inform the choice of the
destination package. Similarly, the trigger button can be used
to visualize the dependencies (D) for choosing the package
that minimizes the number of external references.

By inspecting the meta-data and visualizing metrics associ-
ated with the class, the developer can also evaluate the current
status of the codebase. This seamless interactive process
contrasts sharply with the fragmented and “under-informed”
workflow of traditional IDE refactorings, highlighting the
advantages of our approach.

A

B

C

D

Fig. 5. To perform a move class refactoring, the developer: (A) chooses the
class to move, (B) grabs it and lifts it, (C) optionally inspects other elements
and (D) visualizes dependencies to better understand the context.

B. Extract Method Refactoring in VR

A possible implementation of this refactoring in VR requires
a more fine-grained representation of the source code, since it
involves visualizing and interacting with individual statements
in the source code. Each statement in the method could be
represented as a 3D block, enabling developers to group,
select, manipulate, and restructure them using the controllers.

When a developer needs to extract a portion of a method,
they use one controller to point to the first instruction of the
block they want to refactor and press a button to activate
the instruction, thus anchoring the selection. As they drag the
controller down to the last instruction, the active instructions
between the first and last one are progressively highlighted,
and visually connected to indicate the active grouping. A
common handle allows moving the selected block as a unit.



Once the selection is complete, the developer can easily
extract the block by grabbing the handle and dragging it out
of the original method. The system automatically creates a
new method and a corresponding glyph representing it. The
selected instructions become the body of the new method,
and the tool automatically inserts a call to the new method in
place of the original code block. The process can be enhanced
by highlighting the variables from the original method that
are used within the extracted code. This feature allows the
developer to visualize variable dependencies and manage them
with the other controller before finalizing the refactoring,
ensuring that the behavior of the original code is preserved.

IV. IMPLEMENTATION: CHALLENGES AND LIMITATIONS

We developed a tool to explore our approach and tested it
on a Meta Quest 3 headset. We implemented a Python-based
backend and a frontend in Unity, communicating through a
REST API for data exchange. The backend is responsible for
reifying the codebase into a graph model, while the frontend
renders the VE and manages user interaction. An overview of
the architecture of the tool is shown in Figure 6.

Domain Builder 

View Builder

Serializer

Visualization

XR Interaction Setup

Connection Manager

Back-end

Front-end

REST API

GitHub
Repository

Language
Server

LSP

Developer

Fig. 6. Software architecture of the tool.

The backend consists of three main components. The
Domain Builder scans the filesystem of a repository to create a
tree structure where nodes represent files and directories, and
edges represent their containment relationships. The Domain
Builder also interfaces with a Language Server (LS) to parse
source code files, extracting language entities (e.g., classes,
methods) to integrate them into the graph model. The View
Builder maps software metrics (e.g., lines of code) to visual
attributes (e.g., glyph height) and positions the glyphs accord-
ing to a chosen layout (e.g., rectangle packing).

Users are able to modify mappings and layouts as described
in our previous work [14], customizing the visual representa-
tion of source code elements. The Serializer handles the data
to be served to the frontend through the REST API.

The main challenge we faced during backend development
was model instantiation. The LS is a service that supports
IDEs with textual information, usually designed to be printed
on screen. To address this, we developed a middleware that im-
plements the Language Server Protocol (LSP)2 and handles the
communication between the backend and the LS, thus opening
the possibility to support different programming languages.

The frontend consists of three main components. The
Connection Manager fetches the data from the backend and
prepares them for the visualization. The Visualization compo-
nent is responsible for spawning and handling the 3D glyphs
corresponding to elements of the codebase. The XR Interaction
Setup manages the interactions with the developer, reading
data from the headset and the controllers (e.g., position,
rotation) to update the VE accordingly. It also allows the user
to move in the VE and to manipulate the virtual objects.

Frontend challenges concern interaction and immersion.
Interaction design draws from human-computer interaction
principles, such as affordances, feedback, and ergonomics, to
ensure intuitive user experiences. Immersion, a measurable
aspect of VR, also depends on factors like display resolution
and refresh rate, and can be affected by the limitations of
VR hardware. While SDKs offer tools for interaction and
performance optimization, they often introduce compatibility
issues, leading to development environment instability.

The use of VR presents both accessibility and usability chal-
lenges. Many developers are unfamiliar with VR technologies
and the learning curve for mastering a new paradigm may be a
deterrent. Additionally, the cost of VR hardware and the need
for dedicated setups can limit its adoption. Developers who
are accustomed to the efficiency of keyboard shortcuts and
textual interfaces may find the immersive VR workflow less
effective. Furthermore, the lack of a keyboard for text input
in VR remains a limitation, as the controllers, although more
capable in a variety of situations, are not ideal for text input.

Scalability is another challenge. Visualizing large codebases
in 3D can lead to cluttered and overwhelming views, making
it difficult for users to focus on specific elements. This is why
we integrated features to manage visual complexity (e.g., entity
filtering, different layouts), nevertheless, we are still exploring
and improving them. Finally, performance-related issues also
contribute to the applicability to large-scale codebases, espe-
cially on mid-range devices, such as the Meta Quest 3 on
which we developed and tested our tool.

V. RELATED WORK

Developers spend about 70% of their time understanding
programs [15]. Software visualization is a means to ease
the task [16]. Graphical representations of aspects such as
code architecture [13], [17] and execution flow [18], [19] are
crucial for managing complex systems [16]. Von Mayrhauser
and Vans emphasized the role of program understanding
in software maintenance and evolution, leveraging existing
knowledge to gain new insights [8].

2See https://microsoft.github.io/language-server-protocol/
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Different tools use different metaphors to represent real-
ity [13], or focus on specific targets, such as object-oriented
software [20] and dynamic execution trace analysis [21].
Hoff et al. developed ISA-VR, a collaborative tool to analyze
the activity of distributed teams within VEs [22].

VR has evolved from early stereoscopic photography to
modern headsets like the Meta Quest and the HTC Vive [23].
Initially constrained by high costs, VR is now widely used
in fields such as healthcare [24], training [25], and software
engineering [14], [26]–[28]. The interaction capabilities of
VR make it particularly suited for software visualization,
enabling developers to explore systems in 3D, improving
comprehension, and fostering collaboration [22].

Despite the popularity of VR-assisted software engineering
among researchers for its visualization, comprehension, and
collaboration capabilities [22], [26], [29]–[33], little research
is carried on about interactions with software elements in
VR. Input methods, including controllers, hand gestures, voice
commands, and eye tracking are essential for usability and
immersion [34] as well as accessibility to enhance user
experience [35]–[37]. Developing VR systems for software
visualization requires balancing high-performance rendering,
user comfort, and design to leverage the full potential of XR
technologies in software development [38].

VI. XR IN THE IDE VS. IDE IN XR

The following reflection encompasses the integration of XR
technologies in general, both VR and Augmented Reality
(AR), into software development workflows. XR presents
opportunities to rethink how developers interact with their
tools. Two conceptual approaches emerge: Embedding XR
capabilities within traditional IDEs (i.e., XR in the IDE) and
creating fully immersive development environments where the
IDE exists entirely in XR (i.e., IDE in XR).

In the “XR in the IDE” model, XR features are added,
for example via AR visualization plugins, to enhance existing
IDEs. This approach retains the familiarity of conventional
IDEs, allowing developers to adopt XR gradually, to augment
current capabilities, without abandoning established work-
flows. For instance, an IDE could provide an XR mode where
developers visualize dependencies in 3D or analyze large-
scale software architectures. However, this approach often
constrains XR’s potential, as it forces context switches break-
ing the flow of immersive experiences. The approach is also
limited by the quality of current XR hardware, especially for
VR, forcing the user to wear and remove the headset when
going from the IDE to the VR experience.

Conversely, the “IDE in XR” paradigm, the one favored
in our approach, fully embraces the capabilities of XR by
building an immersive development environment designed
specifically for XR interactions. This approach redefines how
developers interact with their code by leveraging spatial repre-
sentations and natural input mechanisms, such as two-handed
source code manipulation with a greater freedom to design
innovative workflow interactions.

We visualize code structures as interactive glyphs, allow-
ing developers to directly manipulate elements based on the
knowledge acquired through exploration of complex relation-
ships in the codebase, without ever leaving the XR environ-
ment or switching back to traditional input methods.

We showed how the “IDE in XR” approach can reshape
software engineering workflows, using refactoring tasks to
showcase a more intuitive way to design and leverage in-
teraction sequences in VR. At the same time, this proof-of-
concept highlights the importance of balancing innovation with
usability, ensuring that the tools remain practical and effective
for developers. The concerted evolution of this approach to
the point where it can match or surpass current development
lifecycles remains to be proven.

VII. FUTURE WORK

Technical Improvements: A limitation of our prototype
is the time to build a complete scene, which hinders real-
time interaction. Optimizing this process is needed to support
smoother and more dynamic interactions, tightening the feed-
back loop for exploration. Also, enriching the model with more
fine-grained data from the LS will enhance the possibilities to
define meaningful interactions for other types of refactorings.
We also aim to implement the approach as an IDE plugin,
evaluating the unexplored “XR in the IDE” scenario and
highlighting benefits and limitations of the approach.

New Features: Expanding the system’s ability to support
more refactorings will enhance the tool’s utility in practical use
cases, beyond this proof-of-concept. We plan to experiment
with other interaction techniques, such as hand-tracking to
allow direct manipulation of virtual objects.

User Study Evaluation: A large-scale user study on a real-
world refactoring task will allow a thorough evaluation of the
approach in the wild. Moreover, we will use qualitative results
to refine the interface and the interaction sequences, towards
a full-fledged tool for automatic software refactoring in VR.

VIII. CONCLUSION

We introduced a refactoring approach in VR, enabling
refactoring through intuitive and powerful interactions. Our
approach leverages immersive 3D visualizations to support
exploration and knowledge acquisition.

We emphasize the interactivity of the process, an alternation
between exploration and interaction, enabling developers to
better understand their codebases while improving them. Our
approach addresses the limited program comprehension capa-
bilities of refactoring tools available in traditional IDEs. While
many challenges remain, not only related to performance, our
approach breaks the ground for a paradigm switch, leveraging
the potential of XR interactions in software engineering.
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