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Abstract—Classes are the fundamental building blocks of
object-oriented software systems, making their comprehension
critical for effective software maintenance and evolution. Tra-
ditional source code views provide detailed information but
often lack intuitive representations that reveal the structural and
behavioral roles of a class at a glance. This is even harder for an
overview of multiple classes in large and complex codebases.
Moreover, identifying patterns and anomalies within classes
remains challenging through conventional inspection.

We propose Class Contours, a novel visualization metaphor
that portrays individual classes as simple 2D architectural struc-
tures. Our approach visually encodes key class properties (e.g.,
lines of code, attributes, accessors) into customizable building
features (e.g., windows, door frames, doors), supporting pattern
recognition and task-specific visual exploration. With ZION, the
tool we developed to exemplify our approach, we investigate how
common class types correspond to recurring visual archetypes,
allowing developers to swiftly recognize typical roles and struc-
tures within software systems.

Our initial findings suggest that the simple but effective
metaphor can enhance the understanding of class semantics in
large codebases and support the identification of design issues
and code smells.

Index Terms—Class Contours, Visual Patterns, Visualization

I. INTRODUCTION

Classes are the principal abstraction unit in object-oriented
programming languages. They encapsulate state and behavior,
providing a means to break down complex systems into
smaller, self-contained units [1]. Essential for defining the
structure of software systems through inheritance and com-
position [2], classes are not just mere code containers, they
are integral to how software is designed and understood [3].

Comprehending classes is therefore critical for maintaining
and evolving a codebase [4]. For example, a class may encap-
sulate the core logic of a specific part of the model, containing
common behavior shared by its subclasses. Understanding
its internal (e.g., attributes, methods) and external structure
(e.g., clients, providers) is key to understanding its role in
the system. In the context of software evolution, developers
must make sense of existing class structures before extending,
refactoring, or debugging them. Poor comprehension can lead
to fragile changes, regressions, and architectural erosion [5].

Traditional source code views, such as those provided by
Integrated Development Environments (IDEs), offer detailed
insights into the internals of a class. Used as text editors
“on steroids”, modern IDEs allow developers to read and
navigate class members, follow inheritance chains, and explore
references, definitions, and usages. However, these views are
inherently textual, linear, and hard to scale [6], [7].

Developers need to mentally reconstruct the role and behav-
ior of a class from scattered fragments of code [8], presented
as one page of text at a time. This process is cognitively
demanding [9], slow, and error-prone, especially in large
systems with many interdependent components [10]. Software
visualization externalizes key information, leveraging visual
perception to recognize structures, roles, and anomalies [11].
In the case of visualization of classes, there seems to be a
tendency for the extremes. Some approaches, such as poly-
metric views and treemaps [12], [13] focus on scalability at
the expense of details (usually provided on demand), while
approaches like UML class diagrams and class blueprints
[14]-[16] favor detailed views which however fall short, for
example in terms of visual clutter [17], when it comes to
visualizing large codebases. While some visualizations attempt
to strike a balance, achieving an effective middle ground on
large and complex codebases remains challenging [18]-[20].

We propose Class Contours, a novel visualization metaphor
that represents individual classes using simple 2D architectural
elements (Figure 1).
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Fig. 1. Three classes visualized with Class Contours.

Each class is portrayed as a stylized building, where visual
elements correspond to class properties. For example, the
number of lines of code is mapped to the width of the structure,
attributes are represented as doors, and methods as windows.
The mapping is customizable and supports the identification
of class roles and patterns at a glance. We implemented
our approach in a tool called ZION, which supports pars-
ing Java projects, generating visualizations, customizing the
mapping of properties, and interacting with rendered class
glyphs. ZION provides single class and system-wide views
for interactive exploration. We demonstrate the efficacy of
Class Contours through two case studies, highlighting typical
archetypes (e.g., data classes, utility classes), outliers, design
inconsistencies, and code smells that might otherwise go
unnoticed, all without reading a single line of code.
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II. CLASS CONTOURS

Class Contours use schematic 2D architectural elements to
visualize class properties, mapping relevant metrics on position
and size of the elements (Figure 2). Classes are buildings,
where the left and right parts contain instance and class side
members, respectively. The width of the two sides corresponds
to the number of lines of code of the specific side. The
chimney in the middle divides the two sections and contains
the initializers of the class (e.g., constructors in Java). The
building is elevated by steps, one for each of its superclasses.
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Fig. 2. Visual properties of a Class Contour.

Both sides of the building are divided into 4 floor sections.
The ground floor contains the attributes, the upper floors the
methods (public first floor, protected/package second floor,
private methods third floor). The roof’s inclination is a visual
cue that helps distinguishing between the instance and the class
side when looking at the building from a distance.

Methods (except accessors and initializers) are visualized as
windows with the visual properties described in Figure 3.
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Fig. 3. Visual properties of a window in Class Contours.

Width and height of the window can represent the size of
a method (e.g., number of lines of code). The light inside the
window can be on or off and the window can be barred or not.

Light and bars can represent boolean properties of a method
(e.g., is abstract, is an override, is dead code).

The window blinds can be controlled in two ways: They
can be used as a boolean property (i.e., completely open or
closed), or as a numerical attribute, counting the number of
elements of the blinds. Flower pots can be used to decorate the
window by specifying the number of flower pots and the width
of each pot. Pots, following the idea of “decorating”, can map
properties such as documentation comments or annotations.

Attributes of a class are visualized as door frames on the
ground floor, with their getters and setters (i.e., the left and
right door) if present, and can be lit or unlit (Figure 4). This
allows mapping a method property and an attribute property
with the same semantic. For example, a constant method
always returns the same value and a constant attribute’s value
cannot change. This can be mapped on an unlit window and
door, respectively.
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Fig. 4. Visual properties of a door in Class Contours.

Class Contours are implemented in ZION, the visualiza-
tion tool we developed to refine and validate our approach
on interesting case studies. Besides defining the mappings,
ZION allows transforming domain properties to better fit the
visualization (e.g., binning, scaling, setting a threshold).

III. CASE STUDIES

We present two case studies to show the capabilities of
Class Contours, focusing first on individual classes, and then
depicting complete systems. The mapping of Java properties
on the contours for both case studies is shown in Table 1.

TABLE 1
MAPPING OF JAVA PROPERTIES ONTO CLASS CONTOURS PROPERTIES.

Visual
Entity

Visual Property

Java Property

Building’s left side
Building’s right side
Left side width

Instance side members
Class side members
#LOC of the instance side

Class Class Right side width #LOC of the class side
Contour Floors Visibility groups (public,
package/protected, private)
Decorations Constructors
Steps Superclasses chain
Width #LOC of the method
Height Fixed value (30px)
. # blinds elements Number of parameters
Method - Window Lit/unlit Method returns a constant?
Barred/unbarred Not used

Javadoc comments
Fixed value (30px)
Fixed value (60px)

Flower pots
Frame width
Frame/door height

Attribute Door Left door Has getter?
Right door Has setter?
Lit/unlit Attribute is constant?

Comment Flower pot Width # of comment lines
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Fig. 5. Class Contours of classes extracted from the visualization of Apache Dubbo.

A. Individual Class Contours

We present 9 examples taken from Apache Dubbo.!

Data Class (Figure 5 A, top): A low building with many
doors and few or no windows on the instance side, since it
contains only attributes that make such classes simple data
holders. Its class side is usually empty.

Constants Definer (Figure 5 A, bottom): A low building
with only doors on the class side, as it only defines constants.
The class side usually has no methods. All the doors are unlit
because the constants do not change their value by definition.

Utility Class®> (Figure 5 B): A building that comes in
various sizes with an empty instance side. The class side has
windows and possibly doors, as it only defines static methods
(and constants, if needed). Projects often have one or more
large utility classes, resulting in equally large Class Contours.

Instance Side Class Methods (Figure 5 C): A building
with windows but no doors on the instance side. This usually
indicates a code smell. Such methods do not depend on
any state and should be moved to the class side. A notable
exception are, for example, patterns like Java comparators and
Spring Boot services (see Section IV).

Single Entry Point (Figure 5 D): A building with only
one window in the public floor, no windows in the pack-
age/protected floor.

ISee https://github.com/apache/dubbo
2 A special case of helper class, usually non-instantiable, providing reusable
functionalities (mainly) through static methods.

There is a variable number of windows in the private floor.
The windows can be in the instance side, class side, or a mix
of both. Similar to the entry point in class blueprints [14], the
Class Contour also conveys the amount of state (lit doors on
the instance side) and application logic (methods at the upper
floors) hidden behind the entry point.

Adapter (Figure 5 E): A building with a large number of
windows and only one door in the instance side. Its class side
is usually empty but can also contain utility methods. In this
case, thanks to Class Contours, we could find a class with
the wrong name, since the Contour on the left of Figure 5 E
is named RpcContext but, looking like an adapter, manual
inspection confirmed that it does not really have any context
inside and it is indeed an adapter.

Long Methods (Figure 5 F): A building of any size with
very large windows (methods). This often indicates a code
smell. Such methods should be refactored into smaller ones.

Large Interface or God Class (Figure 5 G): A huge
building with many windows in the instance side. In the case
of the Large Interface, it has many windows at the public
floor. Such Class Contours highlight large hotspots of code of
interest (potentially with public access, when the first floor is
densely windowed), but also indicate a potential smell where
one single class has too many responsibilities and should be
broken up into smaller classes.


https://github.com/apache/dubbo
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Fig. 6. Class Contours in a tree layout for visualizing the packages and classes of antlr4 in a hierarchical view.

B. Class Contours at Scale

Figure 6 depicts the complete ANTLRv4® system. Recogniz-
ing patterns at this scale can provide information about entire
parts of the system without having to explore all the classes
individually. Due to space constraints we invite the reader to
study the annotations in the figure, we exemplify two of them.

Figure 7 shows a zoom-in of Figure 6 A. All the classes have
a similar Class Contour and provide similar functionalities.
For comprehending the semantics of the whole package, it is
sufficient to comprehend one class and then to generalize.

Ty

Fig. 7. Pattern of similar Class Contours in the same package.

Figure 8 shows a zoomed-in view of Figure 6 B.
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Fig. 8. Pairwise patterns of Class Contours in different packages.

All the packages have the same structure, with classes in
different packages having, pairwise, a similar appearance. To
comprehend the semantics of all the packages, it is sufficient
to understand one single package and then generalize.

Even at the smallest scale of a system-wide overview
visualization, some glyphs draw the attention highlighting key
areas of interest (e.g., large parts of application logic), while
finer details are naturally hidden as not essential at such scale.

3See https://github.com/antlr/antlr4

IV. DISCUSSION

Class Contours aim to summarize selected specific aspects
of source code through an intuitive visual metaphor, reducing
cognitive load during the comprehension of a software system.
The visual cues we included provide insights at a glance that
are relevant for specific tasks (e.g., comprehension, refactor-
ing, bug/smell fixing), guiding exploration and helping users
maintain a clear mental map of the system.

ZION provides a fully configurable mapping of domain
(code) properties on visual properties. The information con-
veyed by the visualization is highly dependent on this map-
ping. We presented one possible mapping to highlight the
findings of our two case studies. As can be seen by the unused
visual properties and the default values in Table I, using
all available visual mappings could cause overloading of the
visualization and lead to a cluttered view. Further improving
this balance is part of our future work.

The configurability takes into account that an anomalous
class in a context could be the right implementation in another
case. For example, instance side class methods are considered
a code smell in pure object-oriented programming, while in
specific cases (e.g., Java comparator, Spring Boot services)
this is the standard way of implementing such functionalities.

V. RELATED WORK

Understanding the structure and behavior of classes in
object-oriented systems has long been a central goal of soft-
ware visualization [21]-[23]. Different techniques focus on
comprehension of the evolution of large codebases [24]-[29].

UML’s class diagrams represent the static structure of
object-oriented software [30], offering a formalized and stan-
dardized visual language for classes, attributes, methods, and
relationships. While useful for documenting precise structural
information, UML often falls short when applied to large
systems, where their level of detail can become overwhelming
and hinder the ability to grasp higher level patterns [17].


https://github.com/antlr/antlr4

Class blueprints use a layered metaphor to represent struc-
tural and behavioral elements of classes (e.g., instance vari-
ables, methods, invocations) [14] to understand their internal
composition. Although effective for analyzing single classes
and identifying architectural patterns across classes, class
blueprints are not well suited for system-level overviews.

Polymetric views encode software metrics into a lightweight
yet expressive visualization [12]. Properties such as lines of
code or number of attributes are mapped to visual attributes
of shapes (e.g., height, width, color). Polymetric views are
effective at conveying system-wide metric-driven insights, but
often lack details.

CodeCity [31] is a 3D visualization framework where soft-
ware systems are represented as cities, packages as districts,
and classes as buildings. It provides a metaphor similar to
Class Contours, leveraging spatial cognition to allow devel-
opers to explore software landscapes and detect anomalies or
structural patterns at scale with “buildings look-a-like”. Code
cities still lack the configurable fine-grained, yet carefully
constrained representation of Class Contours.

VI. CONCLUSION

We presented Class Contours, a visualization technique that
provides a balance between fine-grained detail and overview
of the whole system. We showed how Class Contours can be
used to grasp insightful information about a software system
at a glance, such as identifying class roles, hotspots, and
anomalies. We also discussed how tiny visual cues, like the
inclination of the roof, can improve how the visualization is
perceived “from a distance”.

Class Contours do just hint at the actual functionality of a
class, so they are not meant to replace source code navigation,
but to complement and ease it. While many challenges remain,
our approach is the starting point for exploring a new and
promising metaphor. The catalogue of patterns is being ex-
panded as we speak, our future work lies in trying to identify
class archetypes and to assign them a unique, simple, and
intuitive visual representation.
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